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Abstract 

Drawing upon work by De Deyne et al. (2016), I explore a 
model of spreading activation through a semantic network in 
regards to how different kinds of semantic relationships are 
encoded in said network. In particular, I examine the 
contribution of indirect pathways through the network to 
explain differences in similarity judgments of sensorimotor and 
linguistic relationships between pairs of words. I propose that 
the structure of a semantic network encodes properties that 
distinguish these two types of semantic relationships that are 
not revealed by measures of association strength that only 
examine direct connections within the network. A cosine 
similarity measure extracted from a spreading activation model 
is compared to a measure of association strength in accounting 
for observed similarity judgments, and a model for examining 
the differential contributions of various random walk pathways 
through a semantic network in the encoding of sensorimotor 
and linguistic semantic relationships is presented. 
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activation; random walk; linguistic; sensorimotor; modeling 

 

Introduction 
Semantic networks encode relationships between words as 
weighted connections between nodes that represent concepts. 
The properties of such networks can be explored to examine 
the structure of semantic knowledge. De Deyne et al. (2016) 
develop a semantic network from word association data and 
use a spreading activation model to explore weak semantic 
associations. It is unclear on precisely what basis people 
make judgments about similarity, and this is especially the 
case when it comes to items which are themselves highly 
dissimilar. This leads to the possibility that such ratings are 
highly inconsistent and uninterpretable. De Deyne et al. 
challenge this assumption and demonstrate that structure 
underlying such judgments may be recovered in the indirect 
connections of spreading activation through a semantic 
network. 

The authors first present behavioral evidence from a series 
of experiments which indicate that systematic patterns can be 
found in peoples’ similarity judgments between highly 

 
1 This work was completed as a final project in a cognitive science modeling course and subsequent independent study 

project. Modeling techniques were employed to expand upon and examine results obtained from a prior behavioral study 
(Bruna, 2020) completed as a final project for a cognitive science seminar course. 
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dissimilar items. They ask participants to choose the most 
similar pair out of three items and find significant preferences 
despite all three items being highly dissimilar (p. 12). They 
then develop a model in order to offer an explanation for how 
these patterns may be reflected in the structure of a semantic 
network. Using free association data from N = 12,428 cue 
words with up to three free responses given for each cue word 
(De Deyne & Storms, 2008; De Deyne et al., 2011), they 
create both a sparsely and a densely connected semantic 
network, which make use of only the first free response and 
all three free responses given by a participant to a cue, 
respectively. This network is represented by an adjacency 
matrix of the associative strengths of word pairs, P. The 
matrix is transformed into a random walk graph, Grw, to 
represent spreading activation through the network. This 
transformation corresponds to the culmination of many 
random walks through the network in which the activation of 
a node as it is “passed through” by a walk initiates more 
random walks. Grw represents the number and length of the 
paths through the network that connect any two nodes (De 
Deyne et al., 2016, p. 15). The random walk is controlled by 
the parameter, ⍺, indicating the rate of decay of activation (p. 
16, 19).2 The more similar the distribution of paths through 
the network is for any two words, the more similar those 
words are considered to be (p. 15). This measure is calculated 
from Grw as the cosine similarity between any two words (this 
is described in more depth below). 

Cosine similarity calculated from Grw was found to predict 
the judgments of each of their behavioral studies better than 
cosine similarities calculated from only the distributional 
overlap of connections in the semantic network without 
spreading activation, with the dense network outperforming 
the sparse network. Similarities incorporating indirect paths 
using the spreading activation model performed just as well 
as similarities that did not include indirect paths only for the 
dense network on responses to highly similar items (p. 18). 
The authors conclude that the underlying semantic structures 
that may be responsible for producing systematic similarity 
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judgments on highly dissimilar items may be represented by 
the indirect connections traced out by spreading activation 
through a semantic network (p. 19). 

The authors follow up on these results by creating a version 
of the spreading activation model in which each possible path 
through the network is assigned a parameter that 
differentially weights the influence of the different path types 
(p. 21). Training these parameters on the behavioral data from 
their experiments revealed a significant contribution of 
longer paths in the experiments examining similarity 
judgments on highly dissimilar items and a significant 
contribution of direct paths alongside indirect paths in the 
experiment examining judgments on similar items (p. 22). 
From this the authors are able to conclude that the ability of 
their spreading activation model to reflect the patterns found 
in the similarity judgments of dissimilar items may be 
attributed to the influence of indirect pathways through the 
semantic network which are not revealed when only direct 
pathways are considered (p. 22). De Deyne et al. conclude 
that similarity judgments encompass not merely lexical 
association but also underlying semantic structures (p. 23). 

To expand upon this finding, I explore the indirect 
semantic pathways traced out by De Deyne et al.’s (2016) 
spreading activation model in order to explore the 
representation of different kinds of semantic knowledge on 
their account. In particular, I compare the representation of 
associations that arise from sensorimotor knowledge, the 
kind of relational knowledge that De Deyne et al. (2016) 
emphasize in their exploration of weak similarities, to 
linguistic associations produced purely by lexical co-
occurrence. 

The relational structure of language has been proposed as 
a possible source of semantic knowledge alongside embodied 
experiences. Evidence that distributional models are able to 
extract meaning from the statistical patterns present in 
language, also called natural language statistics (NLS), 
supports the idea that language itself can contribute to the 
meaning of our concepts (Lupyan & Lewis, 2019, p. 1324). 
These models extract semantic similarities between words 
based on the frequencies with which they appear in similar 
contexts. For example, a machine algorithm called word2vec 
extracts analogical reasoning from these distributional 
statistics (e.g. applying the relation ANIMAL → WOLF to 
FISH yields SHARK; however, applying the relation 
ANIMAL→ DOG yields GOLDFISH (p. 1325)). 
Furthermore, Lewis et al. (2019) found that judgments of 
animal similarity on the basis of shape, texture, and color 
made by distributional algorithms significantly correlated 
with those made by blind participants on an analogous task. 

An upshot of the proposal that the structure of language 
contributes to semantic knowledge is that it provides one 
possible source of abstract knowledge, which cannot readily 
be explained through embodied representations. Abstract 
words are those that cannot be described by merely pointing 
out a referent or enacting its meaning.  Lupyan and Winter 
(2018) emphasize the challenge to account for abstract 
meaning by asserting that abstract words make up most of our 

communication. They observe that in statements only five 
words long there is a 95% chance of encountering a word that 
is as abstract as “freedom” (p. 3). This highlights the 
implausibility that semantics can be entirely reduced to 
sensorimotor, affective, and situational experiences; 
however, amodal theories that merely posit that our semantics 
map onto innate concepts fail to adequately address how 
these concepts arise (p. 4). Attributing abstract knowledge at 
least in part to linguistic structure provides one possible 
response to this problem. 

Furthermore, Marques and Nunes (2012) propose that 
sensorimotor and linguistic relational knowledge may 
differentially contribute to constructing abstract and concrete 
concepts. They observed that the strongest word associates 
for abstract words tend to be related through linguistic 
knowledge, whereas the strongest word associates for 
concrete words do not significantly differ between being 
related through sensorimotor or linguistic knowledge 
(Marques & Nunes, 2012, p. 1270–1271). These findings 
support the conclusion that language occupies an influential 
role in the acquisition and representation of abstract 
knowledge. Moreover, it suggests that the potential 
differential representation of sensorimotor relational 
knowledge compared to linguistic relational knowledge in a 
spreading activation network model of semantic knowledge, 
such as that developed by De Deyne et al. (2016), may have 
bearing on the encoding and retrieval of abstract compared to 
concrete concepts. 

Behavioral evidence from Bruna (2020) suggests that a 
deviance between the representation of sensorimotor and 
linguistic relational knowledge is revealed in judgments of 
similarity that are not reflected in an association strength 
measure. In this study, participants were asked to judge the 
strength of the relation between pairs of words using a 13-
point slider marked only with a “-” symbol on the left-hand 
side and a “+” symbol on the right-hand side (p. 7). Word 
pairs were classified as either sensorimotor associates or 
linguistic associates. Words were presented simultaneously 
as clip-art style images to increase recognizability and 
iconicity, and all words were chosen so that they could be 
unambiguously represented by an image (p. 9). Participants 
completed this task while simultaneously completing either a 
linguistic interference task, a spatial interference task, or no 
interference task (p. 6). 

The purpose of this study was to explore potential 
differential access to different types of relational knowledge 
across interference conditions. To compare these differences 
across interference conditions, the sensorimotor and 
linguistic word pairs were controlled on association strength 
measured as response probability (p. 9). This was expected to 
produce no significant difference in the relational strength 
ratings between sensorimotor and linguistic pairs in the 
control condition. The control was unsuccessful: in the 
control condition, word pairs identified as sensorimotor 
associates produced significantly higher strength ratings 
compared to linguistic associates (p. 11). It was hypothesized 
that these results may be attributable to the fact that pairs 
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were presented as images despite the fact that the clip-art 
style of the images was chosen to evoke a general 
representation of the intended concept that would be 
comparable to the kind of representation evoked by a word. 
This would indicate that variation in the domain of input 
produces differential access semantic knowledge (p. 16). The 
following model explores the different hypothesis that the 
structure of a spreading activation model of a semantic 
network, such as that proposed by De Deyne et al. (2016), 
encodes the semantic knowledge that is responsible for the 
differential rating of sensorimotor and linguistic pairs, and 
that this structure is not revealed by the association strength 
used as a control measure in Bruna (2020). 

 

The Model 
Computations were performed in the R environment (v. 3.5) 
(R Core Team, 2020), using the ggplot2 (Wickham, 2016), 
dplyr (Wickham et al., 2020), tidyverse (Wickham et al., 
2019), readr (Wickham, et al., 2018), BayesFactor (Morey & 
Rouder, 2018), Matrix (Bates & Maechler, 2017), tictoc 
(Izrailev, 2014), igraph (Csardi & Nepusz, 2006), and 
optimParallel (Gerber & Furrer, 2019) packages. Scripts and 
other supplemental materials may be found at: 
https://osf.io/3e2tq/. Scripts for the original model developed 
by De Deyne et al. (2016) may be found at: 
https://github.com/SimonDeDeyne/SWOWEN-2018. 
Finally, the free association data for generating the semantic 
network used was provided by De Deyne et al. (2018) and 
may be found at: 
https://smallworldofwords.org/en/project/research. 

Free association data using N = 12,292 cue words with up 
to three free responses given for each cue word (De Deyne et 
al., 2018) is used to generate an adjacency matrix that 
represents a network in which words are represented as nodes 
with weighted connections between them. Only the first free 
response given to a cue was used to construct the sparsely 
connected network described by De Deyne et al. (2016) 
above. All three free responses given to a cue were used to 
construct the densely connected network. Although the 
densely connected network was shown to marginally 
outperform the sparsely connected network in De Deyne et 
al., both the sparsely connected network and the densely 
connected network are compared in the present work. This 
matrix is constrained to include only cues that were also 
given as free association responses at least once, thus 
ensuring both in-going and out-going connections for every 
node in the network. The connection weights between words 
are transformed using the positive pointwise mutual 
information (PMI+) measure,3 which ensures that responses 
that are very frequently given for many cues are considered 
less informative than responses that are given frequently for 
only select cues (De Deyne et al., 2016, p. 14). The similarity 
between words is assessed as the distributional overlap of 
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shared paths through the network, including indirect 
neighbors up to a path length of three (a path of length one 
describes a direct connection between two nodes in the 
network; a path of length two describes a path between two 
nodes that is mediated by a third node; a path of length three 
describes a path between two nodes that is mediated by a third 
and a fourth node) (p. 21). A random walk procedure is first 
implemented to represent spreading activation through the 
network, as explained above. This is achieved by 
transforming the adjacency matrix, P, into the random walk 
graph, Grw, using the following equation (p. 21): 

 
Grw = 𝛽1P +       (paths of length 1) 
𝛽2PPT + 𝛽3P2 + 𝛽4PTP +     (paths of length 2) 
𝛽5P3 + 𝛽6P2PT + 𝛽7PPTP + 𝛽8PTP2   (paths of length 3) 
 
In this equation, each possible path through the network is 

assigned a parameter, 𝛽, which weights the influence of the 
path on the spreading activation through the network. The 
parameter values fall between zero and one and are 
constrained such that the sum of all eight parameters is equal 
to one. As described above, Grw represents the number and 
length of the paths through the network that connects any two 
nodes. Finally, the similarity between any two words is 
calculated using the cosine measure of similarity. This 
measure describes the similarity between two vectors as the 
cosine of the angle between them. Two vectors which are 
identical in orientation will produce an angle of 0° and hence 
a cosine similarity of cos(0) = 1. To calculate the cosine 
similarity between any two words, the rows of the two words 
are extracted from Grw and the dot product of these vectors is 
calculated after the vectors have been normalized using the 
L2 norm. Normalizing the vectors accounts for differential 
frequency across the two vectors (p. 17). Because the random 
walk procedure introduces indirect activation paths through 
the network, calculating cosine similarity from Grw is able to 
represent the influence of underlying semantic structures in 
the network that are not revealed by associative strength 
measures which only take into account directly neighboring 
nodes. This model will allow for the exploration of how word 
pairs that are associated through sensorimotor relational 
knowledge compared to word pairs that are associated 
through linguistic relational knowledge may be differentially 
represented in the semantic network via the different path 
types. 

 

Fitting the Model 
The word pairs of interest were those used in Bruna (2020). 
These were 16 pairs, divided into eight sensorimotor 
associations and eight linguistic associations. Sensorimotor 
associations were situationally related (e.g. BIRD → TREE) 
and linguistic associations consisted of forward and 
backward associates (e.g. STRAWBERRY → BLONDE). 
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The pairs were exclusively situationally or linguistically 
related so that no linguistically related associate that was also 
non-linguistically related (e.g. WINE → BARREL), or vice 
versa, was chosen (Bruna, 2020, p. 9). 

These associations were generated from eight cue words 
selected from the 47 concrete words used by Marques and 
Nunes (2012). These words were rated as highly concrete 
(ratings > 6.45; Paivio et al, 1968) and were controlled for 
word frequency, familiarity, length (from Clark & Paivio, 
2004), and orthographic neighbors 
(http://neighborhoodsearch.wustl.edu/Neighborhood/Neighb
orHome.asp) (Marques & Nunes, 2012, p. 1268). Two 
associates were chosen for each word from the University of 
South Florida free association norms database (Nelson et al., 
2004). One of these associates was related to the target word 
by a sensorimotor relation and the other was related by a 
linguistic relation. For each cue word, the two associates were 
controlled on the strength of association, measured as the 
proportion of individuals who produced the associate when 
prompted with the target in a free association task; however, 
association strength differed between target words and 
ranged from 0.01 to 0.177 (Bruna, 2020, p. 9). 

Despite controlling for association strength, contrary to 
expectations the sensorimotor and linguistic associations 
produced significantly different relational strength ratings in 
the control condition of the experiment (p. 11). This pattern 
was confirmed in the semantic network of De Deyne et al. 
(2016). With the exception of one cue word, the association 
strength for each pair calculated using the free association 
data from De Deyne et al. (2018) similarly showed support 
for there being no difference in the sensorimotor associate 
compared to the linguistic associate for a given cue word 
(excluding the outlier, BF01 = 3.102437; including the outlier, 
BF01 = 2.366571), and association strengths ranged from 0.00 
to 0.26. In addition to this, with the exception of one word 
cue (different from the aforementioned), cosine similarities 
calculated for each pair from the version of De Deyne et al.’s 
(2016) random walk model that makes use of a single decay 
parameter rather than parameters weighting each possible 
path through the model demonstrate support for there being 
higher similarities for the sensorimotor associate compared 
to the linguistic associate for each cue (excluding the outlier, 
BF10 = 6.372362; including the outlier, BF10 = 5.10439). This 
indicates that the spreading activation model captures 
semantic knowledge regarding sensorimotor and linguistic 
relations that is not revealed in association strength alone. 
Furthermore, the higher relational strength ratings for 
sensorimotor associations found in the control condition of 
Bruna (2020) may be attributable to the structure of De 
Deyne et al.’s (2016) semantic network rather than the shift 
from linguistic to pictorial domains of input, as initially 
proposed in Bruna (2020). 

In order to explore this possibility, the spreading activation 
model weighting each of the eight possible path types 
described above is fit to the response data collected by Bruna 
(2020). Parallel Nelder-Mead optimization is used to estimate 
each of the eight path type parameters of the model using 

random starting values for the sensorimotor word pairs and 
the linguistic word pairs separately. Out of the eight word 
cues used in Bruna (2020), the aforementioned two exception 
word cues that did not conform to the pattern of interest were 
excluded prior to model training, resulting in a total of six 
pairs in the sensorimotor set and six pairs in the linguistic set. 
The cosine similarity ratings calculated from the model were 
compared with the average rating from the behavioral data 
Bruna (2020) for each word pair to produce a correlation 
coefficient that was used as a measure of discrepancy during 
model fitting. 

 

Results 
Model fitting was performed using Hopper, a high-
performance computing cluster hosted by Vassar College. 
Parameter values are given in Table 1. 

The model reached convergence in all runs and produced a 
correlation coefficient between the cosine similarity of each 
word pair in the model and the observed behavioral 
judgments of these word pairs ranging from 0.75 to 0.78. The 
distribution of weights across the eight parameters do not 
appear to significantly differ across the sparsely and densely 
connected networks. Furthermore, the parameters which 
produce cosine similarities between word pairs in the model 
that match the pattern of observed judgments of semantic 
relatedness do not appear to differ significantly across 
sensorimotor word pairs and linguistic word pairs. In other 
words, approximately the same set of parameter weights 
produces measures of cosine similarity that accurately 
describe the observed pattern of semantic relatedness 
judgments in both the linguistic word pairs and the 
sensorimotor word pairs. Furthermore, this set of parameter 
weights supports both direct and indirect paths between 
words in both cases. 

These results do not support the hypothesis that 
linguistically associated word pairs should rely more heavily 
upon direct paths compared to word pairs that are associated 
through sensorimotor knowledge. This hypothesis was 
supported by the notion that words that are only linguistically 
associated should derive their association from lexical co-
occurrence alone. To use an example from De Deyne et al. 
(2016), a consistent judgment of similarity between the 
words ATHLETE and BREATH was found in their 
behavioral studies of weak similarity. These words are not 
direct associates, but as the authors point out it is not difficult 
to produce a chain of associative reasoning connecting the 
two: athletes physically exert themselves, which causes them 
to breathe heavily (p. 14–15). This kind of reasoning is 
possible because of the sensorimotor knowledge that 
connects the two concepts. However, this reasoning should 
not be possible for word pairs that are exclusively related 
through lexical co-occurrence. For example, BIRD produces 
BATH in a free association task, but it is difficult to imagine 
this connection being mediated by other words. Thus, one 
might expect that sensorimotor associates may be connected 
through direct and indirect paths in the semantic network but  
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Table 1 The optimized parameter values for the eight paths 
through the network using the densely connected network. A 
full table including parameter values from the sparsely 
connected network may be found at: https://osf.io/3e2tq/. 

 Sensorimotor Linguistic 

𝛽1 1.563226e-01 2.597393e-01 

𝛽2 5.196752e-02 6.925390e-03 

𝛽3 9.937230e-05 3.896904e-07 

𝛽4 7.344489e-01 7.146740e-02 

𝛽5 1.763123e-03 1.553563e-06 

𝛽6 2.871386e-06 3.406172e-01 

𝛽7 5.537012e-02 3.677076e-08 

𝛽8 2.552427e-05 3.212488e-01 

 
that linguistic associates should be connected dominantly by 
direct paths. This also reveals that one might expect 
directionality to play an important role in how linguistic 
associates are related within a semantic network. My results 
indicate that the differences in observed semantic relatedness 
judgments across words that are related through sensorimotor 
association and words that are related through linguistic 
association is not explained by differences in the structural 
features of a semantic network. This consideration is taken 
up in the discussion section below. 
 

Discussion 
A spreading activation model illuminates structural 
properties of a semantic network that are not apparent when 
merely considering direct semantic neighbors or association 
strength measures. That people tend to respond in predictable 
ways to weak similarity judgments, judgments which at first 
glance would not appear to involve any systematic basis for 
response, demands an exploration of what underlying 
structure might be responsible for these patterns. De Deyne 
et al. (2016) demonstrate that similarity measures that 
incorporate the various indirect pathways through a semantic 
network, as revealed by a spreading activation model, capture 
the response patterns made by people. 

These findings implicate that different kinds of relational 
knowledge may be encoded in the various possible paths 
through a semantic network. For example, it would be 
expected that sensorimotor relationships such as that between 
BIRD and TREE may arise not only from a direct connection 
between these two concepts but also be supported by indirect 
connections that are mediated by similarly related notions. 
However, it would not be expected for this to be the case with 
word associations that arise solely from linguistic structure 

via lexical co-occurrence. For example, BIRD may elicit 
BATH in a free response task, but it seems unlikely to expect 
that this relationship would be mediated by other notions. 
While the associative chain BIRD → NEST → TREE 
appears intuitively plausible, BIRD → ? → BATH does not. 

It was found that two of the word cues examined in this 
study did not exhibit the pattern of interest wherein 
sensorimotor and linguistic associations that were matched 
on association strength revealed a stronger similarity score 
for the sensorimotor relationship when measured as cosine 
similarity on a spreading activation model. Excluding these 
pairs allows for the exploration of this pattern; however, what 
they reveal is that the results of this study cannot be 
generalized to all sensorimotor and linguistic relations. 
Further steps include exploring these variations in the 
different types of semantic relationships within a more 
expansive set of stimulus pairs. 

By modeling spreading activation through a semantic 
network, semantic relations may be examined in the context 
of their situatedness within larger semantic structures. This 
provides a richer understanding compared to the examination 
of these relationships on the basis of association strength 
measured as response probability alone. This is made 
apparent in the use of similarity measures derived from a 
spreading activation model in De Deyne et al. (2016) to 
uncover systematic relationships in weak similarity 
judgments. 

Evidence from Bruna (2020) suggests that association 
strengths do not capture all of the information about the 
relationship between pairs of words necessary to make 
predictions regarding participant judgments of relatedness of 
these pairs. The present study reveals that the difference in 
observed semantic relatedness judgments on sensorimotor 
and linguistic word pairs is also not explained by differences 
in the structural properties of a semantic network as revealed 
by activation of various direct and indirect paths through the 
network. Importantly, counter to the hypothesis, results 
would seem to suggest that word pairs that are related through 
linguistic knowledge (in this case, lexical co-occurrence) do 
not privilege a direct path connection in the model. Instead, 
in both the case of linguistic word pairs and sensorimotor 
word pairs, both direct and indirect pathways support word 
activation. It is possible that these results may support a sort 
of linguistic shortcut theory wherein verbal labels, rather than 
replacing, act as a shorthand for richer sensorimotor 
information (Connell, 2019). Furthermore, such an account 
treats the act of using language itself as a sensorimotor 
process that contributes to semantic knowledge. Such a claim 
blurs any sharp distinction between linguistic knowledge and 
sensorimotor knowledge, a conclusion that appears to be 
supported by the present results. 

Although such an explanation was not found here, 
development of a computational explanation for the 
behavioral differences observed in Bruna (2020) would allow 
for the possibility of a computational reformulation of the 
notion of “different types of semantic relationships” as it has 
been used as a manipulation in studies such as Marques and 
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Nunes (2012) and Bruna (2020) and would present a basis on 
which to ground such manipulations in future studies. 
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